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'FOREWORD

The research covered in this report was performed under Air Force Contract F33615-
6%-C-1807. This contract was originally awarded to Peter R. Payne, Inc., on June 15,
1967, and was transferred to the Payne Division of Wyle Laboratories upon the acquisition
of Peter R, Payne, Inc., by Wyle Laboratories in April 1968. The contract end date was -
June 15, 1970, . .

The Air Force Program Monitor for this contract was Mr, James W, Brinkley of the
Vibration and Impact Branch, Biodynamics and Bionics Division of the Aerospace Medi-
cal Research Laboratory, Aerospace Medical Division of Air Force Systems Command,
Wright-Patterson Air Force ";ase, Ohio.

This technical report has been reviewed and is approved.

CLINTON L. HOLT, Colonel, USAF, MC
Commander
Aerospace Medical Research Laboratory
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SECTION I

INTRODUCTION

The human body can always be damaged by sufficiently high acceleration level'sy. Even the

" gravitational acceleration of 32,2 ft/sec (ref. 1) can cause injuries (damage to the circulatory

system, for example) in some individuals, after a sufficient period of time has elapsed.
The higher acceleration levels associated with re-entry of a space vehicle, which are
maintained for only a few minutes, give rise to "hydraulic problems, " caused by the dis-
placement of blood and other fluids from their normal locaticn in the body. In contrast,
"brief acceleration' or "short period" acceleration which endures for a period of less than
a second, can cause structural damage, if the level is high enovgh, but cannot significantly
distort fluid flow patterns. It is this short period category of accelerations, such as those
that occur in aircraft escape systems, and the body's response to it, which is the subject
of this report. »

The precise nature of the structural injury caused by short period acceleration depends up-
on the orientation of the acceleration vector with respect to the human body, the restraint

. of the human body, the magnitude of the acceleration and the way in which the magnitude
" varies with time. This last aspect is sometimes referrred to as the "frequency content"

of the input.acceleration, but such terminology can be misleading. A referencz to "'frequency
content” implies that such descriptors as the power spectral density of an input acceleration
pulse can be correlated with injury mode, and at the present time this is not proven; indeed,
quite cogent arguments can be made for the contention that power spectral density is not
correlatable with injury, at least in a simple way.

The basic problem. to be studied can be summarized as follows. Given an acceleration
time history, such as that associated with the initial trajectory of an escape system, will
it cause injury when applied to 4 human subject, and what will be the nature of the injury ?
Of course, there is a simple and direct way of determining the answer to this question by
experiment, but we are prevented from using it because of obvious moral, legal, humani-
tarian and other prohibitions. Yet we cannot avoid answering the question because we
could then be condemuing some of our fighting men to death or injury in the future, either
because they will have to use escape systems with excessively dangerous acceleration
characteristics, or because their escape envelope is unnecessarily restricted in relation
to the total envelope of their vehicle. And in a broader context, we must also find an
answer to the'question because of the thousands of people who unnecessarily lose their

. lives in automobile accidents and other crash environments; deaths which might often be

avoided, given adequate restraint and protection.

It is generally agreed that the best line of attack is to develop an accurate description of
the human body, including both its dynamic characteristics and the static load bearircg
capabilify of its many complex components, so that we can accurately calculate the effect
of a given input acceleration time history, and also that we may be able to design a re-
straint or support system which optimumly couples it to the driving force associated with
the acceleration. The construction of such a "dynamic model" is a task routicely under-
taken in the aerospace industry (among others) for structures which are built from well

kil




understood materials. A simple example is an aircraft, for which the strength of each
element is accurately calceulated, in order to ensure that it can perform its function with-
out failure, We also determine the deformation of the aircraft's structure, and construct
dynamic models which tell us how it will behave in response to gusts, how aeroelastic
deformation influences its stability and handling characteristics, and to assure that flutter
and divergence cannot occur with the flight envelope. But such a task is very much harder
in the case of the human boly, firstly because it is so immuch more complex than an aircraft,
and secondly because many f its constituent materials are not "simple" linear materials
obeying Hooke's law and ha'ing small damping. Additionally, the dynamic characteristics
can be varied by tensing or relaxing the muscles which make up so much of the body.
Other variations occur because the various body materials tend to change their charac-
teristics with age, environment, and the degree of physical fitness of the subject, and be-
cause people are not manufactured to the same close tolerances as aircraft.

At first sight one might suppose that an adequate description of the human body could be
built up by measuring the various quantities of interest from cadaver material. Informa-
tion of this type is certainly helpful, and indeed the pioneer of biodynamics, Sigmund Ruff
(ref. 2), obtained a remarkably accurate estimate of the ability of the human spine to with-
stand ejection seat acceleration in this way. It does have severe limitations, however,
because cadaver material is hard to obtain for the age groups of primary interest, and its
dynamic and even static properties are thought to be substantially different from the in vivo
case. Additionally, the important contributions of the muscle structure and fluids are al-
most entirely absent in the cadaver.

It is therefore necessary to devise experiments with live human subjects from which mean~
ingful data can be obtained. Since it is essential to avoid injury to the subjects, the accel-
eration levels used in such tests must be substantially lower than those which would cause
. injury, and the results have to be extrapolated in some way in order to predict the level at
which injury would occur. 1t is also necessary to devise tests which will enable us to de-
termine the damping in the various elements of the system, and the primary dynamic char-
acteristics, such as resonant frequencies. Ore gross way of doing this is to excite the
subject, either by a steady state sinusoiaal vibration, or by an impact, and to measure the
relative motions of various parts of his anatomy. This is a valuable technique in the posi-
tive spinal case (for example) where relatively large and rigid masses, such as the head
and upper torso; are moving on the neck and spine respectively. Such measurements have
been attempted both optically and by means of accelerometers mounted on the subject's
body. Such "external" observations cannot tell us much about the movements of the various
organs inside the body, of course. Alse, while it is quite easy to attach a transducer to
the hip or the upper shoulder, it is more difficult to ensure that this instrument accurately
tracks the motion of the componeént to which it is attached. *

One particularly simple method of studying the apparent dynamic response of the human
_body is to measure its driving point impedance under steady state sinusoidal excitation.
Because no instrumentation is attached to the body, this technique was at one time re-
garded as nearly ideal. In fact, from a purely experimental point of view it is very ele-
gant, and were it not for the fact that impedznce measurements taken in this way vary by

* See Goldman and Von Gierke in reference 1, for example.
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as much as 100% from subject to subject, and even vary for a given subject in successive
tests, the experimenter would be well satisfied with it, But such data turns out to have
rather limited value to the theoretical biodynamicist in his construction of a dynamic model.
As will be shown in this report, impedance data is of little value because it is only meaning-
ful when the system is composed of linear springs and dampers. Additionally, impedance
turns out to have very "limited visibility" in a series coupled system with finite damping
elements. Putting this another way, we might regard an impedance measurement as a

"'ray of light" which permits us to "ook into" the human body. But we then find that we

wre looking into a rather opaque medium. The ray of light shone up from the buttocks (as

in the measurement of driving point impedance for a seated subject) tells us a considerable
amount about the first-degree-of-freedom, namely the pelvic mass moving on the spring of
the buttocks. However, it gives us very little illumination into the dynamic system imme-
diately above the pelvic girdle, and for practical purposes, none for any of the systemns
above that.

One object of this repurt is to examine critically the impedance techniques as a means of
obtaining dynamic information about the humar body by simulating the same measurements
on a mathematical model, the coefficients of which are known. We then put ourselves in
the position of an experimenter who is trying to determine tke nature of the model from his
external measurements alone, on order fo see whether he would meet with any success. In
general, we conclude that he would not, unless all the dynamic elements in the body were
linear, and the damping was very low.

If there is an overall conclusion to this work, it is this; there is no "right way" to discover
the "'right model" for the human body. We must laboriously build a model piece-by-piece,
sometimes relying upon intuition, sometimes on the biologist, and sometimes relying on
the results of a fortuitous experimental observation, but constantly comparing the appacent
external behavior of our model with experimental observations such as those obtained on
the AMRL drop test facility in order to make sure that it is not straying from the reality

of physical measurements. It will be a long time before we can feel that we have a com-
pletely adequate model, and many hundreds of workers will then have contributed to its
construction, just as in any other discipline. In the present report we have developed a
four-degree-of-freedom model of a seated man subjected to vertical accelerations: The
characteristic paraineters of the model are selected by making use of relevant available
data and by matching calculated driving point impedance characteristics with measured
values. It is realized that a number of multidegree-of-freedom models have been developed
préviously, but it is believed that development of the model in this way allows some impor-

‘tant conclusions to be reached concerning the dynamics of the body.
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SECTION JI

THE CONCEPT OF MECHANICAL IMPEDANCE

In structural engineering the concept of the linear dynamic system is widely used. Since

many structures are made up of metal components, each of which obeys Hooke's law (the
linear relationship between stress and strain) the dynamic response of the whole is quite
accurately described by a matrix of second order, linear differential equations, of the
type used to describe linear eleciricai circuits. In the most simple example, the motion
of a single-degree-of-freedom mass/spring/dash pot mechanical system driven by a
forcing function applied to the mass (see figure 1a) can be described by the equation

my +2 Ky + ky

) F¢)
or mv +2 Kv + kfvdt

F(t)

This is analogous to a simple electric circuit in which a resistance, a condenser, and an
inductance are connected in scries, in which the relationship between current and input
voltage is given by: - ;

¥
?

Li + RI + ftat - Et) o

Thus for any consxstent sets of umts there is a direct correspondence betWeen the follow-
ing quantities:

mass m - Inductance L 1
spring constant k - reciprocal of capacitance el
damping constant ZK - resistance R

velocity v=y ~ ' currentl _ '

driving force Fft) - - input voltage E(t)

time t - time t

It is therefore natural to take advantage of the powerful analytical techniques developed
by electricul engineers over the last eizhty years. The concept of impedance is.one of
these‘techniques, which for the simple case shown in figure 1a translates mto mechan-
ical system technology as

Electrical Impedance = Z = Yoltage _ EI-= R+ i(.QL+ L

Current Qc
and Mechanical Impedance = Z = M = ~F“—c- = 2K+ i(R Q)
: . Velocity i’c - » i@m -k Q)

so that, in this case, the real and complex parts of Z are given by:

R@Z)=2K and I(Z) =2m - k/Q




The complex notation is the most convenient way of expressing the impedance in terms of
both its magnitude and phase relationship. Figure 1 shows diagramatically how the imped-
ance characteristics of a number of mechanical systems will depend on the characteristics
of the system. It should be observed that the characteristics of those parts of the system
closest to the driving point are fairly readily discernible from the impedance characteris-
tic, but that the futher from the driving point they are the less influence they have on the
impedance charactzristic. Mechanical impedance of a system may be calculated from
direct measurements of the driving force magnitude and velocity. Dynamically similar
systems have equal impedance/frequency characteristics so that, inversely, if the im-
pedance of two systems are equal then there is goud reason to suppose that they are
dynamically similar.

At first sight, this technique seems attractive as a means of studying the dynamic response
of the human body. Alternative methods, such as attaching accelerometers to various parts
of the test subject's anatomy have well known shortcomings; in particular, it is difficult to
mount them "rigidly, " so that they move with the skeletal structure, because they are
necessarily attached to the relatively soft flesh covering the structure. It is, therefore,
easy to understand the attraction of a test procedure which requires no instrumentation

of the subject, but mesely an unambiguous measurement of input force and velocity.

Unfortunately, as indicated in figure 1 and as will be shown later in this report,. the driving
point impedance of a series connected lumped parameter model only gives useful informa-
tion for those few systems which are closest to the driving point.

For the series system illustrated in figure 1d for example, measurement of the driving
point impedance will show a large peak corresponding to the resonance of spring and damp-~
ing k, K, in which all the other masses tend to move with mass m. The larger the damping
ratios, the less effect systems further from the driving point have on the impedance charac-
teristic and the more the features of the characteristics will be obscured (see fig. 16).

An apparent frequency and damping can be deduced for this mode, but it bears little resem-

blance to the actual values of system (1), or indeed tc any simply identifiable characteristic

of the model. Thus, the procedure sometimes used of comparing experimental impedance
measurements with a single~degree-of-freedom, lumped parameter mode, may be very
misleading. Much more sophisticated methods of data analysis are required to recover
any useful information from impedance data, starting with computer techniques of smooth-
ing the experimental data in a mathematicaliy meaningful way. Even when this is done,

however, only the first system in the series is clearly visible, when the damping is as high ~

as that of the human body.
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- A TWO-DEGREE-OF-FREEDOM SYSTEM

Figure 2 shows the variation of impedance modulus with frequency for an arbitrarily
selected two-dcgree-of-freedom model. Fcur different values are used for the lower
spring and damper. It is remarkable that, when the lower system is soft such as in

the cases shown where wj = 10 or 20, the impedance curve appears to be that of a single-
degree-of-freedom system and gives no indication of the presence of the second peak at-
tributable to the second-degree-of-freedom. It is also notable that, at high frequencies

Iz} - 2K; as Q-+

This result, and those indicated in figure 1, can be generalized for any number of degrees
of freedom. It implies:

(a) that the lowest mass tends to become stationary at high frequency,
so that all the work is absorbed in the lowest damper, and

(b) that the lowest damper therefore masks the effect of high fre-
quency resonances further up in the system.

In a similar way it can be shown that when the model is terminated by a mass (mp) at the
driving point (as in figure 1c)

12l m Q2 as Q - ©

At the low frequency end of the impedance characteristic, the whole system mass tends to
move as a single body so that . ’ .

|Zl—>m1;9 as £ —— o

where mr s the total mass. This result is true, whatever type of element terminates
the model at the driving point,

Let us now pretend that we do not know that the impedance curves in f'igure 2 were devel-
oped by a two-degree-of-freedom system. Lacking this knowledge, it would be reason-
able to assume that the system generating the curves of figure 2 could be approximated by
a single-degree-of-freedom, particularly for the lower values of w; . Such an assumption
would lead to the results shown in table 1.

It is interesting to note that this calculation gives a reasonable figure for the apparent
stiffness (kp) of the lower spring, the maximum error being a 207 under-estimate. The
apparent damping constant (2K, ) of the equivalent single-degrec-of-freedom model agrees
very closely with the actual value for the lower system (ky), based on both Z ,, and the
asymptotic value of Z as 2 — o . For practical purposes, then, the apparent damping
ratio (€5) of the single-degree-of-frecdom approximation is, however, considerably less
than the actual damping ratio (1) of the actual system. Thus, the single-degree-of-
freedom assumption gives a satisfactory indication of the characteristics of the lower mem-
bers of the multi-degree system.,




The relative amplitudes of the two masses are shown in figure 3. Itis clear that the Z max
corresponds to both masses moving more or less together on the lower spring and damper.
A second resonance occurs at a frequency of about 8 Hz, and may be regarded as being due 1
to the upper mass moving on its own spring and damper, rather like a vibration absorber, A K
so that the lower mass is relatively quiescent. It will now be shovm that this second reso- ‘ g

i

pance is independent of the lower spring and damper values.
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TABLE I

Equivalence of One- and Two-Degree-of-Freeduvm Systems

* Those values of ¢, are read from figure 24 of reference 7, for the appropriate values

A

of {Z| max /Qo m,.

D IR WU SR PR e

10

Bt ol v i AT LRI S s R, Vi i N

w, (rads/sec) 10 20 | 48.7 70 "\,
k (b/ft) 125.0 500.0 29. 60 6.20 o
Values for | &, .25 .25 .25 .25 |
1 s
2-Degree- m (b sec2/t) 1.25 1.25 1.25 1.25 |
of-Freedom m (b sec’/ft 3.73 3.13 | 3.3 | 313 :
System 2K =26 m w. (b sec/fty)  6.25 1.25 | 30.4 43.8 b
from \zl__ (b sec/tt 0.0 | 158.0 |s40.0 [400.0 1. -
figure 2 | prequency for |zl 5.98 12.58 | 27.65 | 36.5 {4
max, : . g0 .
o (rad/sec) Ja
Izlmax/ 2 m. (-) - 3.58 3.37 3.2‘95 3.24 -
*Apparent T, (-) 1.48 .155 .16 .163 ,\
1 Apparent : . é..,,,-’, —
(EA/El) (.592) (. 62) (. 64) (-652) fo
Equivale:t [
Apparent w, (rad/sec) 5.98 12.58 27.65 36.5 ‘ /
1-Degree- - : 1y ‘ 7
(wA/wl) (.598) (. 629) (.568) (.521) il
of-Freedom 2 : 1§ et
Apparent k=wA mT 133.0 469.0 28.40 49, 60 ;
System . . ' i1
. 'kA/kl) ~ (1.06) (. 939) (. 960) (. 81)° v
=2¢ €. 6 4.5 . 4 .
Apparent ZKA 2cAmTwA .1 33.0 44.4 ;
(Ib sec/ft) ;s
(@K, /2K ) " (1. 05) .05 | @.os5) | (.01 ]
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Equations for a Two-Degree-of-Freedom System

§,= compression of vspring n

Yo 2 o unstretchec_i length of spring n

/7 7777/

Figure 4. Notation for a 'I\vo-Deg_ree-—of-Freedom System.

The equations of motion for the two-degree-of—freedom system shown in figure 4 may be
writfen as follows: . , .

I‘f,?; = /2& é."'klsl) + /2K7 §2“}k,$;) ‘}

mif. [ zxz.g', 3 k5,) J | ®

ot

v v (268 G8) - 26ty 1wl S,) 48
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i Behavior of the Lower System

- . The force in the lowér spring and damper must be equal to the applied force
\_,7_, j 2 5 = Fe o ' | e
;J [ i.e., 2¢, 9, + W, 9, ~ c (3)
\.. 1 ; ’ >

SO : o & @y o o 7 e - Fe

, 1 or S (zé’,) v T Agm, 2k

.
!
o , | \‘f—r, dt . faudt
’ e ;) = 4 L F ot +C
- ‘ : 2K

NS /R e
7 = g *% [[—9’ 3¢, Fe Jt + Cj
e N , 2 K » L

o P ﬁ,J~ ‘ T ) : 5 C L ) (4)
. For the case when F. = F, sty .t . the integral becomes

‘ : 1 ac, = Y - F

e i . jJ' Sdt = i——;, [J- 28 cm . tdt
- ot '

_ F .t [£ zz sent- |
i : _
\ : 2K,LL <,
e 1 ' [+ GR) ] )
T |
\;".‘\\ %
; . - = U' o T
1 58 = [—.—L Sim Lt = CorlLE -5 :
. 2k a6 . .] . C2 EY

A L &J i .
[r+GHz) ] ' ®)

te o o The term containing the integration constant’ C is a transient function of the initial

conditions, and can be ignored when considering stz2ady state sinusoidal excitation, because
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the steady state condition can be written as

@), SiwLt -2C,NCos2 T

S.:_EL

< (6)
| W, ™, [—(ZE‘,.Q.): - ‘J"J

Note that as JL — 0

,— L2 sinnt = Fosinnt
c')l )”0 Rl

and y) =yp =Y¢

This is the static displacement result, ’ o= ,—ﬁ- , where the force is transmitted by the
spring and the whole system moves as a solid body,. in phase with the applied force.

When _N_— o0

5 — - FaCosn! o

2 E" I, 0
but : e . .
S — Fo aunnt o
aCm

Thus the moiion lags the applied force by w72 , ‘and all the force is absorbed in the
damper. )

The maximum value of & is obtained by re-writing equation (6) as

S, = Fo Stn (-2t + W)

e m, f 1+ (3T Z) ' @
- =
where Smy, = 28w ®)
: t+ (ac "3——”‘)‘

The maximum deflection amplitude occurs in the limit case (v220) when all the force
is absorbed by the spring but the motion amplitudes are so large when >0 that the
displacement amplitude ratios ./ and 7,/7¢ tend to unity, masking the fact that the
spring deflection is maximum at this point (see fig. 35). '

14




T

Behavior of the Upper System

Equating equations (2)

(2¢,5,+0285) = (1+¢9) (268, » 0*F,) + &, ©)
But (ZCIJ‘; + C-).‘J.) = g

Thus the response of the second system is obtained directly from the equétion

5 r216(1+) 4 i (he)s, = Lt G0)

It will therefore respond to the excitation as if it had an apparent damping coefficient of

c,.(1+@) and an appgu‘ent undamped natural frequency of ahfi=@ . ‘
Since w, and ¢, do not appear in equation (10), they can have no influence on  da N
whatever their values. This is illustrated empirically in figure 5 by plotting Y/
“for the cases illustrated in figure 3, where all the amplitude ratics J, /e collapse on
the single line of 7, /71 .

When Fe=FS»frt, the steady state response of the upper mass may be derived from
equation (10) in 2 manner similar to the derivation of eguation (6) from equation (3)

é_' % Sin (2 + (P,)
a

: ’/[(l +0)- (-"‘3‘;-)714- 4 &} ('*‘”)1(?% ?

a1).

where Con q//._,, = 2G, (1+ ¢)‘—£—L;

&)=
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y,/y, AMPLITUDE RATIOS

10

1.0

Note: Amplitude

ratio is independent
of .

<5

] | 111 ] L 1 111 I

.5 1 5 10 50

-

0/2 7 FREQUENCY (Hz)

Figure 5. Amplitudé Ratios of Two Degree of Freedom System-
: of Figure 3
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We note that the static dicplacement amplitude ( 2 -= O )is

%~ 5 otm o "'%" -

If F, is a steady force, the entire system is accelerating at

e ", ¢ FC

Yo =Y Yo = o0

T. 1 2 m1 + m,,

and the force in the upper spring is therefore
(X Fc
ko6, = m)y . = ——pr3
22 2°T

1+ m'zl

which is the result given by equation (12).

-

HIGHER-DEGREE- OF-FREEDOM SYSTEMS

Figure 6 shows the lmpedance of several multi~degree-of-freedom systems with a low
damping coefficient of © = .03. Despite this low damping, visibility of the higher modes
is very poor, the correspondmg peaks being orders'of magnitude less than the ﬁrst peak,
and therefore virtually undiscoverable under real experimental conditions.

When the damping ratio is increased to the value of T = 0.3, more typical of biodynamic

structures, (fig. 7) it is found that only the first two or three peaks are visible, further
compounding the problem,

The corresponding complex impedance plot for the ten-degree-of-freedom vsystem with
¢ = 0.3 is given in figure 8 and the relative amplitudes of three of the ten masses in
figure 9.

IMPEDANCE OF A NONLINEAR SYSTEM

So far we have ronsidered only linear systems. Even so, only the first mode can be seen
clearly in the impedance plot when the damping is appreciable, as in the human body.
Phillips (ref. 4) found that force deflection measurements on a seated subject obeyed an |
approximately cubic deflection law. He, therefore developed a single-degree-r{-freedom
model mounted on a damped cubic spring. The cubic spring has different stiffnesses at
different values of mean loadings (or "bias') which conforms with the observed change in
impedance characteristics measured in centrifuge experiments (refs. 5, 7). In figure 10
the appareat impedance of the Phillips model is presented with "coulomb, ' linear and hy-

draulic damping, at three different bias levels.
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Figure 6. Comparison of 1to 10 Degrees of Freedom Models

Damping Ratio ¢ = . 03
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/Z/ IMPEDANCE MAGNITUDE (ib sec/ft)

.1 L 1 Liigl - | | Llll
.01 .1 .5 1

/2, FREQUENCY Hz

Figure 7. Comparison of 1 to 10 Degrees of Freedom Models

Damping Ratio € = .3
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. s 10 masses

| ——

N\

10 degrees
of freedom
damping factor =.3

Figure 8. Complete Representations of Impedance vs. Phase Angle
for Frequencies From .81 to 100 (@ = . 3) for the Ten
Degrees of Freedom Model of Figure 7.
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It is noteworthy that coulomb damping can result in an apparent impedance an order of
magnitude greater than that of the same system with linear damping and that a change in
loading bias of the cubic spring can change the impedance very considerably, This figure
clearly ndicates that, unless the type of damping is known, i.e., viscous, coulomb, ete,,
and the spring deflection characteristics, impedance data’ tells us almost nothing about the
nature of the system.

et

. f‘,"p. o

. THE DEFECTS OF EXISTING IMPEDANCE DATA FOR HUMAN SUBJECTS

Impedance measurements of live human subjects have been so far obtained in two ways -
analysis of abrupt deceleration, and "steady state' sinusoidal excitation. The most recent
ngteady state” measurements, and in many ways the most interesting, are due to Vogt, '
Coermann and Fust (ref. 5), (seated position) and Vykukal (ref. 6), for a semisupine position.
In both cases a centrifuge was used to bias the steady state acceleration and both investiga-
tors noted changes in impedance with increasing acceleration. Some of this data is repro-
duced in figures 11 and 12 for 1, 2, and 3 g bias conditions. - v

In both investigations the experimental scatter appears to be quite large, even though the
experimental points are (most unfortunately) not given in the papérs, and can only be in-
ferred from the plots, This scatter is not too surprising when it is noted that in an earlier
study Coermann (ref 0} obtained foralg loadmg

{ZImax
1Zlmax

At the low force levels associated with shake table measurements, muscle tension evidently
plays a major role in the dynamics of the body. For large loadings, where the failure mode
is generally vertebral fracture, one would not expect muscles to play so significant a role,

6.65 x 106 dyne/cm/sec, subject sitting erect 455.5 1b sec/ft

6

i

347.5 1b sec/ft

5.08 x 10 dyne/cm/sec, subject sitting relaxed

The most recent impedance measurement (ref. 5) under 1 g conditions ("slightly erect”
posture) resulted in an impedance peak of only 267.5 1b sec/ft, possibly indicating an even
larger inherent scatter than the two results mentioned above., A spread of nearly 2:1 in

IZ’ max is not ‘very encouraging, especially when dynamic model analysis of ejecticn injur-

.les (for example) indicates that the large deflection dynamic characteristics of the human

body are rather surprisingly consistent,

In this connection, it is suggested that the Vogt, Coermann and Fust (ref. 5) data is more
meaningfully presented as shown in figure 12, rather than by connecting up the data points

with straight lines, and mferrmg that the resulting peaks and valleys have some physical
meaning.

In a later section of this paper, it will be suggested that the first and largest peak in the

impedance modulus for a seated human is due to the whole body resonating on the buttocks.
This statement is only approximately correct, of course, because other resiliences in the
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Figurel2. Inferred experiinental data points for the

impedance measurz:nents of Vogt, Coer-

Jnann and Fust (ref. 5) under 2g and 3 g bias,

25




body are also deforming, but to a lesser extent. Since the variability ir the size and muscle
tone of the buttocks is greater than for most other portions of the (male) human body, it is
not surprising that impedance measurements dominated by the buttock mode should be very
variable, from subject to subject, .

The available data on IZlmax is given in table 2, together with the characteristics of approxi-
mately equivalent single-degree-of-freedom lumped parameter systems which would give

the same value of[Zmax at the same frequency. The two values of |Z] ymax for the "sitting
erect” case are plotted in figure 13 and compared with the results given by the simple twe-
degree-of-freedom model shown in figure 2, using the ratios of the undamped natural fre-

quencies calculated in table 2 (rather than their absolute values). The trend is seen to be
in the right direction, at lcast, lending support to the hypothesis that Coermann's (ref, 7)
buttocks in the 1963 experiments were significantly stiffer than the average of the ten sub-
jects used in the 1968 report (ref. 5). ;

An attempt to reproduce these measured impedance data by using a four-degree-of-freedom
lumped parameter model is described in the next section.
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Experimental Values

Freedom, System

Equivalent One-Degrea~of-

TABLE 11

Equivalent Single-Degree-of- Freedom Model

"~ for "Steady State" Impedance Measurements atl g

Sitting Relax-

Sitting Erect

Sitting "Slightly

ed (ref. 7) (vef. 7) Erect” (ref. 5)
[lpax €@yme/em/sec) 5.08 x 108 6.65 x 108 3.9x10®
17 nay b Bec/ft) 347.5 455.5  267.5
Frequency for |Z| max 20/27 (Hz) 5.3 6.3 5.0
Frequency for 1z} ax Qo f(rads/sec)|  33.30 39.6 31.42
Subject Weight (@b) 185.0 185.0 176.0
Effecttve. Weight* mg (b) 161.0 161.0 153.0
Effective Mass* m (slugs) 5.01 5.01 4.76
- (-) 2.083 2.30 1.7884
) C (-) 0.27 0.24 0.33
Ro/w ** (=) 1.018 . 1.012 1.037
w/ag Hz) 5.21 6.22 4.82
w (rads/sec) 32.8 39.1 30.3
S Qo/Q res T (-) 1.105 1.078 1.175
gms/zﬂ (Hz) 4.8 5.84 4,25
Where £ res is the resonant f'requency of the system at which the amplitude

magnification is maximum,

*  Effective weight is taken as 87% of the total weight on

the assumption that the lower legs and feet are not excited,

*+ From Payne, reference 8.
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SECTION 11

A LINEAR FOUR-DEGREE-OF-FREEDOM
SPINAL MODEL FOR THE SEATED MAN

The linear single—degree-of—freedom "spinal" model currently used to calculate Dynamic
Respinse Index (DRI) is, of course, only the starting point for the development of a more
sophisticated model. The first step is to add a "pelvic mass' at the bottom of the "spine
spring” and a buttock resiliency underneath the pelvic masis. The pelvic mass and buttock
spring represent the "buttock mode, " and for the reasons discussed earlier, it seems likely
that this mode has the greatest influence on impedance measurements of seated subjects.

The next logical addition to the medel is a degree of freedom representing the viscera,
since many studies have shown that this has a marked resonance between 3.0 and 3.5 Hz
(see, for example, ref. 1 and the quoted exerpt on p.45).. As shown in figure 14, this is

most simple shown as being supported from the upper torso mass, although a case could

obviously be made for an additional spring-damper connection to the pelvic mass, shown .
dotted in the figure. In view of the relatively greater significance of the links closest to
the shake table, it would appear that the connection 5 will have a far greater influence on
the fmpedance than 3." However, this concept (5) has not been pursued further. ’

Finally, sincé shake table measurements have shown marked head resonance with respect
to che upper torso at around 30 Hz, it is desirable to add the degree of freedom on top of
the upper torso.

These four degrees of freedom give the model shown in figure 14. In the next section we
first derive the linear equations for this model, and then a more general relationship which
permits the inclusion of nonlinear terms. The coefficients of these equations are then
determined by an examination of experimental data, using various techniques.
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EQUATIONS FOR THE FOUR-DEGREE-OF-FREEDOM MODEL

>
% % @ Head and Neck
-

Viscera &.% \ N -
o , "@ Spine and Upper Thorax

:-_1 ..-G) Buttocks and Pelvic Mass

a
b v

Figure 14. The Four-Degree-of- Freedom’ Model of a Seated Man

Let >\h = unstretched length of spring n
. Sh =M o spring deflection (+ 4@ In compression)
Then m7 = /2(S+k8) /21(,5,-* l’153> ‘

aadfi= (265 5, ms,) 3 (20,8, +h:55) = (26, 8., +/<. ) |
(

”bg' ) (2K9 Su? kv‘ge) )
m,i. = ‘{zxzﬁt' +k3$.) /
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The equations (13) become

4

and

-
Qs
»
(
[~ ]
..
T W
L V)
1

(26,5, 4 578) d/z)/&,c, ¢ w s,) \
/26'; S 4 w357 #(2)(ze, § 1 wis,)- #8)/2¢, , s %,)

, | ' : 14)
/2(’ s" - w“SQ) * N

= )\‘;/70 '7&)

* Similarly :7', = y, - 9' - 54

yo = ﬁ.e'sl ".sa - S#
s: = )z "/gs‘ 7:)
e > L X - :y.e '.S.‘ + .S;_ .s;
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Making these substitutions, the equations of motion (14) become

(X ]

e

< (54205, 4078.) - F(3)(20,8, + 0359

L]

]

[}

(5

Y

+2¢04 S; +w,’$,) +¢['§‘)(2(‘§‘ # wp 9

— 4l (24,5, 11 5,) + g

/;; #24"5‘, -IN:'Sq) + 5, + 5,

T"[ g, +2¢3§, -fw:S,) " S: 4 3,

" Note from (17) and (18) that

(%:. +2¢, S’, fw; S,) 4 /§;'42c;§,‘ Jw:Sr) = o

THE NONLINEAR EQUA TIONS

If the damiping and spring forces are nonlinear, we replace the terms,

-

tions become

! 2.

1

5 k § P - .
~ + sy, a“) by r,. , for simplicity, so that the equa-

“”F: - 1‘/,3}";

+8s + B+ 4ER - HE)R,
.-r'S., 4.9; + £,

as)

(16)

a7

@8)

19)
29)
@1)

@2)
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Equations (15) through (22) show how the response of one degree of freedom is modified by
the other degrees of freedom.. ¥or example, suppose m_ and m, are zero so that ¢ (2/3)
and @ (4/3) are both equal to zero'and the equation (20) becomes:

Vo= 81+ 8 + By
or for a linear system [from equation (17)1

(X}

Vo = By + 2eg85+ wydg) + by

This is the "cushion theory' equation of reference 6.

THE BUTTOCK MODE IN THE LINEAR MODEL

It has already been established that the closer an element of a multi-mass model is to the
driving point the more effect it has on the impedance characteristics. This is illustrated
in figures 6 and 7. Thus, it is clear that probably the most important components of the
seated human body in influencing the impedance are the buttocks. It is also rather obvious,
upon consideration of this subject, that the spring rates, and possibiy the damping rates of
the buttocks may be highly nonlinear. Under high g loads, for example, the buttocks will
"bottom out' and cease to influence the behavior of the body. The very markedly different
effects of various types of nonlinearity are shown in figure 10, In order, however, to
operate the linear four-degree-of-freedom model of the seated human body, it is necessary
to assign linear values to the buttock spring stiffness and damping rate terms. The values
used were as follows (the subscript 1 refers to the buttock/pelvic mass system):

;vVPelvic mass m = 64/32.2 (lb—sec2/ft)
. Undamped natural frequency wl = 39.55 to 198 (rad/sec)
Damping ratio ' 51 = .5t0.05 ‘.

The subject of a more realistic nonlinear representation of the buttocks mode will be -
treated in a later chapter (see p. 88).

’THE SPINAL MODE AND ITS APPROXIMATE LINEAR MODEL

A method of computing the stiffness of the human spine has been given by Stech and Payne
(ref. 9). This method is based upon Yorra's (ref. 11) stiffness measurement for a single
14 vertebra (fig. 15) extrapolated for all vertebrae between L5 and T1 inclusive by means
of Ruff's (ref. 2) breaking load measurements shown in table 3. In the following analysis
the subscript 3 refers to the total spinal loads and deflections and to the upper thorax mass,
and the subscript m refers to those parameters that are particular to one vertebra (m = 14,
etc.). Subscript 1 and 2 will be used to indicate the deflection of a particular vertebra from
deflection§ toS . '

' My My
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L~4 Vertcbra, Age 57.5 Years (ref. 11)
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The errors inherent in the method are such that it is pointless to strive after extreme
accuracy. Thus, a low order polynomial fit to Yorra's force-deflection curve, as shown
in figure 15, is probably satisfactory for deflections less than one-tenth of an inch. This
fit given by an expression of the following form is assumed to be similar for each of the
individual verteobrae with appropriately scaled coefficients:

Where Bm is the deflection of the m vertebra. In the case of the 14 vertebra shown in
figure 15, the coeffients used were as follows:

when 82 4 18 in inches : ’ when 824 is in feet .
o = 3.88 x 103 o =4,66 x 104
5 . .1

F = 2,032x10 . f =2.925x 10
'y =12 x1® Sy =211 x10®

" The local stiffness is

‘lffl = &« +28 4, -3)‘5‘
a3, fon =37 @4)

An "average stiffness’ of a nonuniform spring may be defined by equating the work required
-to compress a spring with the zharacteristics given in equation 23) (from deflection S'»,

to deflection ;v’. in the case of the nth vertebra), with that required to compress an equival-
ent uniform spring of stiffness km12 The work done Wl’ o to compress each of these *
springs is given by: .

Thus, for the sprmg represented by equation (23)
C Wi = (xS pSy -rsl)ds,
P ad
= gf(:,.,, -57) 4.%_(::’.,- 5n) = o (5m-5%)
and for the equivalent uniform spring (defined by the equation Ff,‘.-.- R,.,’a 5.,.. ):

fk,. Sy ol Som _’;’:u(é’,:‘-&:).

b >

Equating these two values for k’,,. and makiag the simplifying assumption that 5 = o which
can be done with little loss of accuracy then the average stiffness is given by:

k,’n = & + %/9 5.,,’ - 'é_-)";‘,:; 25)
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Following the Stech and Payne procedure, the stiffness between each vertebra and the base -

of 15 atl g lurding (table 4) can now be computed, with the results illustrated in figure 17.
Stiffness muitipliers for different g values (from figure 15) and age (from Stech and Payne)

are given in figures 18 and 19,

In the original Stech and Payne analysis, the spine was taken to extend from T1 to L5 inclu-
sive. A more detailed examination of the human anatomy has suggested that termination a
the top of T4 would be more logical as little of the upper thorax is supported by vertebrae
above this point. Thus, from figure 17 the total stiffnesses from L5 to T4 are, for a male

subject age 57.5 vears :

LOCAL 1 g stiffness = 4.97 x 10% /1t

AVERAGE 1 g stiffness = 3.15 x 10° Ib/ft
Corrected to age 27.9 vears by means of a multiplier of 1.52 read from figure 19, these
give ‘ :

LOCAL 1 g stiffness = 7.56 x 10° b/ft
_ @6)

AVERAGE 1 g stiffness = 4.79 x 10 lb/ft

For small amplitude excitation, assuming an upper thoracic mass mg = 1.49 1b seczlft.
the local 1 g stiffness gives ’ .

3 -
w3 = ‘/_7_:_51_‘%39_ = 71.1 rads/sec (1 g)

For smali amplitude excitation about 2 g and 3 g we have, from figure 18

LOCAL 2 g stiffness = 7.56 x 1.255 x 10"3’ = 9.50 X mg 1b/ft

" 3 g stiffness = 7.56 x 1.43 x 10" = 10.80 x 10" 1b/ft

and w3 =71.1 x 1.255 = 79.6 rads/sec (2 g @7
= 71.1 x /1.43 = 85.0 rads/sez (3 g _ 28)

These stiffnesses and frequencies are substantially greater than the figures previously de- -

duced by Payne. At 10 g the average stiffness is given by
.10 g stiffness = 4.79 x 1.855 x 10° = 8.9 x 10° 1b/ft

Average
3
w3 = %%3—0_ = 77.4 rads/sec (10 g @s)

Corrected to the single-degree-of-freedom spinal model, where the head (12 1b) and upper
torso (48 1b) masses are lumped together, we obtain

w3 = 77.4 x ,/%g—'—g-

69.3 rads/sec (10 g) ' 30)

il

[}

11.05 Hz (10 B)
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s TABLE 1V
a 1g Stiffness Calculations (b/ft units)
L K (for 57.5 Year Old Male Subject)
) i .
) - i Stiffness of Each Vertebra Total from L5 to Each Vertebr
i 3 % Vertebra | Local Stiffness | Average Stiffness Local Average
.- & (from 0 to 1g)
y S 166 | T1 18.02 x 10° 11.4x10° 3.016x 103 | 1.910x 103
o/ ;

7 | .221 T2 24,0 15.2 3.623 2.295
: é .217 | T3 30.1 19.05 4.27 2.703
.

/ H .332°| T4 36.0 22.8 4,972 3.149

S .387 TS 42.0 26.6 5.768 3.654

. ¢ : . .
E .461 T6 50.0 3.7 - 6.69 4,236
i : 535 | T7 58.1 36.8 7.72 4.89
s ¢
A .607 | T8 65.9 41.7 8.90 5.64
. / . 689 T9 74.8 47.4 10.29 6.52
A .753 T10 81.7 51.8 11.93 .7.56
Y - 4
> : .784 T11 85.1 53.9 13.97 8.85
/ [ 210 | T12 87.9 55.7 16.72 10.59
L
Ry .826 | L1 89.6 56.8 20. 65 13.08
.888 L2 96.4 61.0 26.83 16. 99
E .996 | L3 108.2 68.5 '37.18 23.55 °
- . i
| 1.0 14 108.5 68.7 56. 64 35. 88
) : 1.091 L5 118.5 75.1 118.5 75.1
S
</ ,,‘
v”i
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Figure 17, Spinal Stiffness at 1 g for 57.5 Year Old Male
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Figure 18, Average and Local Stiffness Between L5 and T4
Inclusive (Age 57.5 Years) as a_Function of Loading
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- STIFFNESS MULTIPLIER, BASED ON AGE 57.5 YEARS
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The equivalent values using the T1 vertebra instead of the T4 vertebra would be:

3

AVERAGE 10 g stiffness (T1) =1.91 x 10" x 1.52 x 1. 855 =5.39 x 103 Ib/ft

and / 3
_]5i39x10 x32.2 _ ’
wy(T1) v rn = 54 rad/sec (10 g)

ws(Tl)/Zn = 8,58 Hz

This is very close to the value of 8.45 Hz deduced for the original Payne injury model.
However, it is now assumed to be more realistic to use the T4 values for k3 and w3.
In the linear four-degree-of-freedom model described in the next chapter of this report,
the following ranges of values were chosen for a parametric study of the impedance of
spinal/upper torso mode:

Upper Torso Mass: m, = 48/32.2 1b secz/it
‘ = 1.491b secz/ft
‘. Spring Rates: _ . k, = 2400 to 6300 Ib/ft .
Undamped Natural Fréquencies: Wy = - 40 fo 65 rads/sec
Damping Ratio: ‘63 = .075t0.3 (-)
Damping Rates: 2K =  13.2 to-52.8 Ibsec/ft

These values were varied in the ranges given in an attempt to match measured impedance
curves such as those shown in figures 1 and 12, The mass was fairly readily definable
and so was not varied. The spring rate k_ was varied across a range representing the
spread of observed data. The damping was varied over a much wider range both'to ob-~
serve the effect of the change and because experimental measurements vary widely.
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THF. VISCERAL MODE

Goldman and Von Gierke (ref. 1) have pointed out that "one of the most important sub-
svstems of the body, which is excited in the standing and sitting position as well as in the
lying position, is the thorax-abdomen system, The abdominal viscera have a high mobil-
fty due to the very low stiffness of the diaphragm and the air volume of the lungs and the
chest wall behind it. Under the influence of both longitudinal and transverse vibration of
the torso, the abdominal mass vibrates in and out of the thoracic cage. Vibrations take
place in other than the (longitudinal) direction of excitation; during the phase of the cycle
when the abdominal contents swing toward the hips, the abdominal wall is stretched out-
ward and the abdomen appears larger in volume; at the same time, the downward deflec~
tion of the diaphragm causes a decrease of the chest circumference. At the other end of
the cycle the abdominal wall is pressed inward, the diaphragm upward and the chest wall
is expanded. This periodic displacement of the abdominal viscera has a sharp resonance
between 3 and 3.5 Hz. The oscillations of the abdominal mass are coupled with the air

oscillations of the mouth-chest system."

Weis and Mohr (ref. 12) have used cineradiographic analysis to record the dynamic de-

. flection of visceral components during and after a positive spinal impact in the seated
position. They show the deflection time history of the diaphragm as a typical example.
If this is regarded (for the moment) as a single-degree-of-freedom system, then the
apparent damping and frequency can be determined from the overshoot abhove the stat~
fcally deflected position or datum, measured from the maximum downward deflection

position, using tke equation

Overshoot Ratio, OR = overshoot above datum’ _ 1+ e N 31)
datum o

where ¢, = /|- % and subscript 2 refers to the visceral system.
- [ .
nI/= |
(The relationship between €y and ¢, /-1&is plotted in figure 20.)

When this is done, the following results are obtained:

Subject Tense Subject Relaxed

.

Cvershoot Ratio, OR: ( - ) 1.063 1.212]
' . from ref. 12 from ref. 12
Apparent frequency )/iﬂ (Hz) 9.68 - 6,37 j

g /'l = 2.7 1.554

“ 3

T, (from fig. 20) (-) 0. 66 0.44

Undamped natural frequency

w . ":“r. =/ '.{'27' '-g'.‘ ) (HZ)‘E 12.0 7.1

The apparent stiffness is therefore much greater than is indicated by the shake table mea-
surements of Coermann et al (ref. 7), indicating, at first sight, considerable nonlinearity
in the visceral springs. On the other hand, the apparent frequencies are of the same order

*See figure 22 of ref. 8 44
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as the spinal mode, so that the Weis and Mohr measurements of the diaphragm motion
may be showing the "whole body' response with some modulation due to visceral move-
ments with respect to the rest of the (deforming) body. In this report the latter inter-
pretation is assumed to apply. This means that the frequency of the visceral mode must

be taken from the sinall amplitude measurements of Coermann et al (ref. 7), and the
value initially selected is

ws = 20.4 rads/sec . (81A)

For an assumed visceral weight of = 15 lbs. this corfesponds to a spring rate given
by:

ky @2%m,= 20.4% x -;-g—:g = 194 b/t - (31B)

There is no simple and direct way to determine what dampiné factor to use. If the value
used is too low, however, the visceral mode shows up as a peak on the impedance plot.

No such peak is observed in the experimental data, Thus, the visceral damping is ad-
justed to the minimum value needed to surpress the visceral peak in the impedance magni--

tude; values of € of .125,. .25 and .5 were used. Clearly, the representation of the viscera ’
as being simply suspended from the upper torso is a gross oversimplification as there must

be a considerable visceral load acting directly on the pelvic mass.

_Thus, for the visceral mode the following values were adopted for this study:

Mass: m, = 15/32.2 1b secz/ft
Spring Rate: k2 = 194 Ib/ft
Undamped Natural Frequency: w, = 20.4 rads/sec (31C)
Damping Ratio: . 32 = ,125, .25, .5 (-)
| Damping Rate: . 2K, = 2.375, 4.75, 9.5 Ib sec/t
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THE NECK MODE

my T ' Head

!

»Fo sinQ t +

i

Figure 21, Idealizationof the Neck Mode

¢

The transmissability experinients of Dieckmann (ref. 13) indicate a head/shoulder reson-
ance of 3.5 at 30 Hz, for a seated, sinusoidally excited subject,

Ythmax _ 55 -
(3 )max . : .
{f the motion is sinusoidal. The frequency of 39 Hz is so much greater than the values de-

rived for the visceral and spinal modes that preliminary calculations can be based upon
the simplified two mass system of figure 21.

?
'1"hus 4., - . . . -

_"'373 ",f,%ﬂff/f.)(y 5., 414,5,,) :I

Mide = (26,5, + 2,5, ) }

| ' : - @

And since 3;4 = _'v'3 - §4 "the second equation becomes .

P o ] L. 2 . :’_‘ : .

y 2 S 1268, 1w, 5, = F~SRiorwl,

. 3 ot F . Y .
s S -+ 2( -fk)t = £ - . I ®
i ‘S" ¢ S’ "y S ﬂZ‘ sy /2(9 8(' + e SG)

@3)
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where

o3 =
Thus, the apparént undamped frequency is 3

G =

Wy o1+ ‘p(f)

. and the apparent damping coefﬁcient is

Caq “'-“754[’* ("ﬂ

" The apparent damping ratio is

- c —
Cay = ai:; =Cv‘/"'¢(g’)

The response of equation @4) will be

DF sin(nte . .
s - g;(_al);, sin(ntedh)  gE fuoSn ) gs)
T

”ﬁ Wey

ST ST

Q;- PF

—
—

¢(§) qss ?—" ¢

1t A

- o
where d, ; is the steady state deflection of the neck spring ‘

This solution may be erpressed in terms of 6"4)m ax/ @‘?’)max and since, from equaticns
@33) and (35) ‘

. =

O L < J[-(2)] - +a)
= (3"} O i
L1+ @) m, ¢,

(36)
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Similarly, since »'7', =2 6;3;, e e S, from equation (32), and, from equation (35)

o

= ﬁf Fe i’d, "L 2C ——-Cu(ﬁ-t"lP)‘- Slwmt"l}’)}

l)mr = 7—, 7/If- 4C,;(—;£))-‘=)x

(7)
_,[I - 4Cy w.) o
4[[; - (J'-)] . 48 ( )

This function is discussed in Appendix I, where it is thought in figure 1.2 that the amplitude
ratio of 3.5 corresponds to a damping coefficient ratio of ‘

¢, =0.15 ‘ 39)
and to resonant frequency/natural frequency ratio of

Doy _ 9
..._-qu = .97

Thus, if resonance occurs at 30 Hz the frequency ¢Jy is giv'en by:

wy = 308 = 30.6 Hz = 192.3 rads/sec '
0.979 . @0)

and the corresponding damping force is:

Al r192.3 ¢)2
32.17

= lo.75 J; » @1)

Fop, = 25«“’«7’%5« =
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Taking a typical head weight of 12, 0 lbs, the spring rate corresponding to w 4 is therefore

ky = wi m, = ;g:g x (192.3° = 14, 000 1b/ft “2)
Thus, for the head and neck mode the following values were selected:_
Mass: : : m, = 12/32.2 'b sec>/it
Spring Rate: _ bk4 = 14,000 Ib/ft
Undamped Natural Frequency: w, = 192.3 rads/sec 43)
Damping Ratio: o '64 = .0. 15 .
Damping Rate: | 2K, = 10.75 Ibsec/tt |

These quantities were not varied in the subsequent analysis as they seem to be fairly well
esiablished (in ref. 13)and the head and neck are remote enough from the driving force
for their influence on the measured impedance to be small.
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. Having now an approximate idea of the magnitudes of most of the coefficients for the four-

"damping discussed earlier. Neither was the mass distribution varied as this was considered

IMPEDANCE CALCULATIONS FOR AN EQUIVALENT LINEAR MODEL

degree-of-freedom model, it is i'nstructive to determine the driving point impedance of the
model and compare the results with the existing experimental data. By systematically

changing the model coefficients, it is then possible to obtain better agreement with exper-
ment, and to study the influence of the individual elements. This has been done, and some
of the more interesting results are presented in figures 22 and 51 inclusive. The effect of _
the head and visceral masses on the driving point impedance could only be minor, so these
masses, springs and dampers were not varied in this analysis, except for the visceral

to be well enough established. : : o P i.

e e

The fixed values were the following

"~ Masses: Pelvic m, = 64.0/32.2 1b sec:/ft
' * Viscera m, = 15.0/32.2 1b secz/ft
Upper Torso m, 48.0/32.2 1b secz/ft
Head ) m, 12.0/32,2 b sec” /1t
Springs: Viscera/Upper Torso w, = 20.4 rads/sec (see eq.31A) °
: Head/Upper Torso w = 192, 3 rads/sec
k, = 14,0000/ (534D
Dampers: Head/Upper Torso 54 = .15 (see eq. 39)
and the variable values were varied according to table 5. k -

Figures 22 to 51 are plotted to the same scale as the experimentally measured values shown Iy
in figures 11 and 12. The closer ('.at the analytical curve simulate the measured values of
figures 11 and 12, the more representative the analytical model may be assumed to be.

The curves plotted were calculated using an analog similation routine on a digital computer.
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TABLE V

Variables Used in Linear Four-Degree-of-Freedom Model

Mode 2, Viscera 3. Spine 1. Buttocks
Link Damper -Spring  |Damper Spring | Damper
Parameter cy wq ¢35 w, g,
Units - rad/sec |-- rad/sec | --
Case No. 2 Fig 22 .25 59.1 .15 - -
Case No. 3 Fig 23 .125 59:1 .075 39.55 .125
Case No. 4 Fig 24 .25 59.1 .15 39,55 .25
Case No. 5 Fig 24 .25 59.1 .15 47.5 .25
Case No, 6 Fig 25 .25 59.1 .15 55.5 35
Case No. 7 Fig 25 .25 59.1 .15 63.2 .25
Case No. 8 Fig 26 .25 69.1 .15 198.0 .05
Case No. 9 Fig 27 .25 50.6 .15 39.55 .25
Case No.10 Fig 28 .25 50.6 .15 39.55 .5
Case No,11 Fig 29 .5 59.1 .15 39.55 .25
Case No. 12 ' Fig 30 .25 59,1 .3 " 39.55 .25
Case No.13 Fig 31 .5 59.1 .3 39.55 .25
Case No.14 Fig 32 .25 59.1 .15" 47.5 .5
Case No.15 Fig 33 .25 50.0 .15 47.5 .5
Case No.16 Fig 34 .25 40.0 .15 417.5 .5
Case No.17 Fig 35 .5 59.1 .15 417.5 .5
Case No.18 Fig 36 .5 59.1 .15 44,0 .25
Case No. 19 Fig 37 .5 59.1 .15 44.0 .5
Case No.20 Fig 38 .5 59.1 .15 47.5 .5
Case No.21 Fig 39 .5 59.1 .15 51.0 .5
Cas> No.22 Fig 40 .5, 59.1 .15 47.5 .25
Case No.23 Fig 41 .5 59.1 .15 47.5 .125
Case No.24 Fig 42 .5 69.1 .15 - -
Case No.27 Fig 43 .5 65.0 .15 - -
Case No.28 Fig 44 .5 65.0 .125 - —
Case No.29 Fig 45 .5 65.0 .1 - -
Case No.30 Fig 46 .5 59.1 .11 47.5 .25
Case No.31 Fig47 .5 59.1 .15 108. 6 .25

! Case No.32 Fig 48 .5 _ 59.1 .15 80.0 .25
Case No.33 Fig49 .5 59.1 .15 120.0 .25
Case No.34 Fig 50 .5 59.1 .15 140.0 .25
Case No.35 Fig 51 .5 9.1 .15 160. 0 .25
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Figure 22,

fy = FREQUENCY  (Hz)

Four Mass System Without Buttock Damper
and Spring, Case No. 2.
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The linear model doscribed in the preceeding pages had sone evident shortcominga, par-

_the computer model to accept nonlinear representations of at least the spinal and buttock _

, : CORRECTIONS TO SPINE BTIFFNESS AND 4DAMPING BASED ON IMPENNCE DATA

: | Steedy atate mechan(cal lmpedance measurements-of seated aubjecte have been made under S
1 g conditions by several investigators. As indicated in flgure 11 the results are very -

.‘ Vogt, Coermann and Fust (ref. 5) also measured impudance in & centrifuge, with steady

 state acceleration biases of 2 and 8 8. Their results are plotted as experimental points in e

when the 1g data has already demonstrated rather extreme varlabl"lty, and therefore,

. buttock stiffness beyond a value corresponding to about @) = 60 rads/sec causes the spinal

DEVELOPMENT OF ~ -
THE NON-LINEAR FOUL-DEGREE-OF-FREEDOM MODEL

ticularly (n the attempt to force the spinal and buttock modes into a linear representation,
when both are clearly highly nonlinear. The next stage in the development was to expand

*ii"r e

eprlng and damp!ng rates. This <nalysis is discussed in the followlng pages.

vurlable. .

figure 12, because there seems to be no justification for drawing fines from point-to-point =

preaumably, conslderabla axperlmental scatter.

'I‘he most reliablel g data ls presnmab!y the moat recent (shown as curve 3 in ﬁgure 11).
Figure 46 shows a linear dynamic model which gives good agreement with measured data,
up to a frequency of about 8 Hz. In this csse the location and magnitude of the first peak is

largeily dependent upon the stiffness and damping of the buttock mode. At the present time the S
poor agreement above 8 Hz is not felt to be significant, because, as already shown, this is -
characteristic of nonlinear syatems, and the buttock spring is known to be very nonlinear. : ,

It is elso known that the buttocks tend to \rau'y2 from aubject to subjcct more than any
other part of the human anatomy. Thus, the primary dependence of the first peak on the
buttock mode elegantly explnlns the wide varlablllty ln the 1 gmeasurements N

R e e

It might be thought that the larger impedance peak at a hlgher frequency (about 8. 5 Hz) . R
which {s measured under 2 and 3¢ bias, {8 caused by the stiffening of the buttocks under T

the higher loading. As Indicated in figure 52, this turns out not to be so. Increasing

LN

resonance mode to increase in amplitude, and the first peak becomes asymptotic to abcut
8.8 Hz as &) -» 02, Fo. large values of &; the motion is almost entirely In the splnal

mode, and the buttock mode can be consldered to be "shorted out".

With "'shorted-out" buttocks the model shown in figure 45 gives good agreement with im-
pedance measurements, below about 11 Hz. Note that In figures 45 and 46 S

ey = 59.1rads/secfor1g, (g = 69.1)% x ;——gg = 5200 1b/ft) @ ]
@3 = 65.0 rads/sec for 2-3 g, (, = ®s. 0)2 “ = 6300 1b/tt) 5)
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-The 1g stiffness given above is 83% of the spinal model, and the 2-3 g local stiffness is
79% of the spinal model, corrected to age 27.9 ycars. An average stiffness reduction

to 81% of the age 27.9 years value is seen from figure 19 to correspond to a test sub-
ject age of about 44 years, which is not impossible, but is unlikely. (Unfortunately, sub-
jJect age is not usually documented in such test reports.) On balance, it seems best to

provisionally assume that the live human spinal stiffness is 80% of the value determined
from cadaver data. ’

In order to estimate the total spine force deflection characteristics, using the data shown
in figure 16 for the L4 vertebra, the deflection scale was assumed to be inversely pro~
portional to the stiffness. Thus, a deflection of .1 inches of the L4 vertebra was assumed
to correspond to

.1 _ 108.5
S2m x 22229 = 1196 feet
12 X 7.56 €

of the whole spine between the L5 and T4 vertebrae. [108.5 x 103 1b/ft is the local 1 g
stiffness for the L4 vertebra from figure. 16, 7.56 x 103 is the total 10cal 1 g stiffness
for the spine of a 27.9 year old man, from equation 26).] Reducing the force scale by a
factor of . 80, as suggested above, allows the force deflection curve for the whole spine

of a live 27. 9 year old man to be given by making the appropriate corrections to the co~
efficients of equation 23).

. 1 . ) . l .
3 . 5 2. ¢ 2
Fia ‘3.88 x 103 (8% g5 ) §4+2.032 x 105 (.8 x 2y §,4%

it

.1196

‘ 6 .1 3
. 0 ( —_ 3
1.22 x 107 (8x 35)) §,

(]

3 | 5 ¢f 5.3 '
2.59 x 10 53 +1.138 x 10 53 -5.7x10 534(for 53(.12) 6)
In practice this curve is found to produce sensible values of F‘ for S 3 £ .12 ft. For
53> .12 ft the tangent to the curve at that point was used in numerical calculations:

Fg, = 3312 + 521.8 §, for Sg3.12) @)

This revised curve of force F4.versus deflection for the whole spine is shown in figure 53,

So far as spinal damping is concerned, a value of ¢ = 0.1 (associated with¥ 4 = 65 rads/sec)
seems to give best agreement with the centrifuge ithpedance data. Thus, the damping force
is given by: .

48.0 & :
Fp, = 2%0.1x65.0x 3550 85 = 1045, 1, 8)

In the absence of any other data, this damping is assumed to be linear and thus applies
to the spinal model for all deflections and deflection rates.
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.Figure 53. Spinal Spﬁng Force Deflection Curve Assumed
for 27.9 Year Old Live Male Subject
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BUTTOCK STIFFNESS

As shown by Phillips,* as indeed, would be intuitively supposed, buttock stiffness is
nonlinear, at least up to 1g loading. The Phillips data, plotted in figure 54 is very
scattered, and does not go above the 1g loading case. One might suspect that creep
(primarily displacement of blood) and muscle tension variation would both contribute to
this scatter.

An average value of Phillips' data is

=177.0 8, (inchets)z'44

= 3.3 § 24 x10% ' | | (49)

when S, is in feet.

Fgl

The local slope is

‘9F8; - 5.5 S' 1.44 4 504
. .
0.59 (

=172.0 Fg (b/ft) A 1

1

If all the subject above the buttock cushion, including thighs, were rigid, the small pertu-
bation natural frequency for a 172-1b subject, with 150 lbs supported on the buttocks and
68-1b pelvic mass would be given by:

we = dFsl /{ w, - 1mz.0 L)
. W,
( =)
. 172.0 x N-39 x (150)-59 .
¢ 150 -
32.2
Wo = 26.63 N-29 (radians/sec) ' : S G1)

where N = Steady state acceleration’ (-
g .

Thenatural frequency of the buttock spring at the corresponding steady state acceleration,
when associated only with the pelvic mass is given by:

w, = ..,;/'_l?sg =1.485 ¢, 62)

*Unpublished trial report by Norman J. Phillips on Contract No. AF 33(657)-1894, Aerospace
Medical Research Laboratory, Wright-Patterson Air Force Base (Nov 1967) entitled "Research
on Human Responses to Complex Vibrations and Design Principles for Body Support, Restraint

and Vibration Isolation Systems" 87
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For N = 12 3

N295 = 1.0 1.227  1.383
», = 26.63  32.65  36.8 rads/sec |
| = a2 5.2 5. 86 Hz

W, 39.6  48.5 547 rads/sec

In order to obtain agreement with impedance measurements, it is necessary to assume

W, =47.5 rads/sec(l g) and w, > 160 rads/sec (2-3 g). (Compare figures 42 and 51,
for example.) The 1 gvalue of 47.5 rads/sec is 120% of the value indicated by Phillips'
data, a difference which is not at all surprising when it is recalled that buttock size and
muscle tone are very variable. Because of the poorness of this data, therefore, it is con-
venient to adopt Phillips’ assumption that the buttock spring is a cubic up to 1 g.

Rough measurements made by loading up a subject seated on a hard chair, indicate that the
buttocks ""bottom out'* at 1.5 g, so that above this force value the buttock frequency is
arbitrarily assumed to be ¢, = 160 rads/sec corresponding to a "stiffness"k, given by:

1602 x 64
‘32.2

50,100 1b . . ' . (63) -
it ’

3
Fs.“""s'

" .
drf* = 2b,S, _ :
Ve 5 '

At 1 g, assuming a subject with 139 1b supported on the buttocks and a 64.0 lb pelvic mass:

ky

Iy

Below 1.5 g, if

. (] ) aen

i g e # 77 o) et s o o '2/.. R ‘3___..;-;432/!
, dfs , . 3 b, F 3 - L r'4 /', ] !
- ;s PR - ; —— s' ) - ) I/
wo Gt T wm(Fh) v oz,
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For the 1g case where Fs = 139l 01b

C % :
w‘£ 53; b = 425 mls/sae

| o | 6y
: - ‘ . {' . o
e b %2 = }72 2l© '
‘¢ ! / £33 ) ' <
©5)

and the general expression for FS for less than a 1.5 g load, which corresponds to a
deflection of 0.1066 ft is:

Fs1=1.72x105 s R )

Thus the buttock spring is assumed to be as shown in flgure 55.

The buttock damping is assumed to be constant so that

2K =2cm = 2T m = 2x0.25 x 41.5 x;‘i.%-m 21bsec/ft, 67

and the buttock damping force is therefore given b&:

FINAL MAN MODEL

| _The final form mass analog of a seated man used in subsequent computations is shown in

figure 56. The total weight of the man is.assumed to be 160 b, distributed as follows:

Head S 12 1bs
Upper Torso ] 48 lbs
Viscera 15 1bs

Lower Pelvic Mass 64 lbs
339 Ibs (supported by buttocks)

Legs and Feet 21 1bs (assumed to move with seat)
. 160 lbs

The values used for the spring and damping forces for the four modes are shown in
figure 56. The spring and damping constants are shown in table 6.
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Figure 55. Buttock Spring Force/Deflection Curves
Assumed for a 27,9 Year Old Live Male Subject
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w4=

12.0 Ibs. | "F* ‘Y}

! Fp, =2x0.15x192.3x12.0 5, -
. 32.17

! 8 Positive in Compression

Fg, =102.3%x12.0x 8,
32,17

? | Wy = 48.0 Ibs,

Fs,

Fp, =2x0.5x20.4x15.0x5, 1
2 32.17 20. 42x15.

W,=15.0 Ib,
; | 2 FD3 =

s
S
]

19.4 5
- sa

Fg [= 2.59 x 1035
3

+1, 138x10583 | 83|

0% 53
83

for |83| < .12

W, =64.0 1%, =@331.2+5278. 0[5,|)

83,108
rsl-8. x10"x17.2 for 0 <5, 50.1066

s0for 8, <0
=208. 3522+5, 09x10% (5; - 0.1066)

: (857 83))
=1 \ for|sg|2.12
Fp,=47.2 3

for &, 2 0.1066 [ W5 =53.5Ib.

Figure 56, Mass, Spring and Darﬁping TForce

92

Equation for Final Man Model

R




P
1)
3

. TABLE

Vi

' Mass Springrgnd Damplng Constants Used In Final Non-
B Linear Four-Degree-Of- Freedom Model

0 : 1 2 3 4
Mode Legs/Feet | Buttocks Visceral Spinal Head/Neck
(Lower (Upper
Pelvic Torso
o Mass) Mass)
Weight Distribuiion] 21 64 15 48 12
(tb)
(Total Weight (Assumed
=160 1b to move with
139 1b feet)
supported by
buttocks
Spring Constant - Variable 194 Variable 14, 000
k (b/tt) (eq.56) (eq.31B) | (eq.46) (eq.42)
. Undamped
natural frequercy - 47.5(1 g 20.4 65.0 for 192.3
: load) 2-3g '
variable load
e (rad/sec) (eq.54) (eq.31.A) .| (eq.45) (eq.41)
Spring Force - See fig55 | 194 2 See fig 53 | 14,000 ,
Fg (1b) (eq.56) (eq.31B) (€q.46,47) | (eq.42)
Damping Ratio - . 25 (for 0.5 O.1(for g }0.15
€ (-) .1=47.5) |(eq.31.C) | =65 rad/ (eq. 39)
(eq.57) sec)
(eq.48)
Damping
Coefficient 47.2 9.5 19.4 10.75
. 2K (Ib/ft/sec) (eq.57) (¢q4.31.C) | (eq.48) (eq.40)
Damping Force 47.2 1. 9.5 2 19.4 3 1V.75 4
Fp, (Ib) (eq.57) (€q.31.C) | (eq.48) (eq. 40)
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SECTION V

COMPARISON BETWEEN MODEL OUTPUTS AND EXPERIMENT

As can be seen from figure 46, linear impedancz model number 30 gives good agreement
with experiment up to a frequency of about 8 Hz. Since the model coefficients were ad-
justed with this end in view, such agreement is meaningless by itself, of course, The
lack of agreement at the higher frequencies is also to be expected because of the import-
ance of damping at the higher frequencies. As indicated by figure 10, for the simple case
of a single-degree~of-freedom cubic moedel, the presence of nonlinear dcamping can mar-
kedly change the apparent impedance.

~ 1If impedance model number 30 (figure 46) is driven by a sinusoldal imput, the relative

amplitudes of the various masses are as indicated in figure 57. These results are very
similar to the experimental measurements of Dieckmann (ref. 13) and Latham (ref. 14).
Since these experiments are quite different to impedance measurements, the qualitative
agreement of the model is very ericouraging.

Moving now to the final model configuration, with the nonlinear spine and buttock springé.
we should expect similar results: for both input impedance and amplitude ratio. Unfor-

tunately, there was insufficient time available to carry out such a comparison during-the -

present study.

The nonlinear model was compared with an AMRL drop test tower experiment, however.
As indicated in figure 58, the input acceleration was approximated by two polynomials,
and the resulting force-time history is given in figure 59, Except for the fact that the
model appears to be slightly under-damped, the agreemeunt with experiment is considered
to be excellent.
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SECTION VI

SUGGESTED FUTURE WORK

BUTTOCK DYNAMICS

The stiffness and damping of the buttock mode should be investigated experimentally. Some
preliminary work in this area has been carried out by Phillips, * but much more extensive
testing is needed. It should be possible to establish meaningful methods of defining buttock
size and muscle tone and to correlate the dynamic measurements with these parameters.
This opens the way to determining the buttock dynamic characteristics of a particular air
crew member by simple measurements during routine physicals, if further work indicates
that buttock dynamics have a significant influence on injury potential.

SPINAL DYNA MICS

-1t should be relatively easy to determine spinal stiffness from cadaver material, hslng

complete spines from subjects of different ages, and there seems no good reasm why this
important data should not be obtained at once. Spinal mode damping is more difficult, since
it must be obtained with live subjects. At the moment, and cxcepting the work of Kazarian**
with monkeys, even the mechanism of spinal damping is unknown. It should be possible to
build a fixture which will oscillate the upper torso with respect to the pelvic girdle, and in
this way obtain damping data for small and moderate spine deflections. If the mechanism
for this damping can then be discovered, it may be possible to extrapolate the damping

data throughout the range of operational interest
GENERAL RESEARCH ON DAMPING MECHANISMS

It has generally been assumed that damping of the human body is linear; mostly, one sus-
pects, because only linear damping can be handled analytically. Kazarian's work with mon-
ke¥s implies that "orifice" or "hydraulic" damping may be significant in the spinal model.
There may also be a substantial amount of quasi-coulomb (constant force) damping in other
parts of the body, however, and as has been shown, this can have a substantial effect on the

apparent impedancé at the higher frequencies. . . i

It is therefore essential to obtain a better understanding of the mechanism of damping in
the various parts of the human body, so that more realistic damping relationships can be
used in future dynamic models. Some new possibilities in this area are pointed out in some

earlier work done by Payne and Anthony. ***

* See footnote on p. 88.
** Verbal communication from L. Kazarian of AMRL.
*** Unpublished Wyle Laboratory working paper No. 140-1 (13 November 1969) entitled
"Notes on a Simple Model of a Spinal Vertebra" by P. R. Payne and A. Anthony.
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RELATIVE MOTION OF BODY COMPONENTS

Dieckmann (ref. 13), Latham (ref. 14), and Woods (ref. 15) (among others) have all con-
tributed to the investigation of transmissibility, and the relative motion of body components
(head, shoulder, hips, etc.) under steady state sinusoidal excitation. Unfortunately their
data is rather fragmentary, and a more ambitious program needs to be undertaken, using
at least ten different subjects, with very carefully designed instrumentation. It might be
helpful to use both accelerometers and optical techniques at the same time, for example.
in addition, excitation of the subject should be applied at different locations and bias, as
suggested below.

(a) Excitation at zero g bias, (with the subject supported horizontally on air jets).
Excitation should be at various locations (feet, shoulders, head, for the

- vgtanding" position, and buttocks shoulders and head for the "'seated" posi-
tion).

(b) Similar experiments under normal 1 g bias.

{¢) Similar experiments (excluding head excitation) in a centrlfuge, to ohtain
. higher bias values.

(d) Experiments where "intermediate" positions (such as the hips) are driven
after being cast in plaster
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APPENDIX 1

DIQCUS_SION OF AN AMPLITUDE RATIO FUNCTION
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APPENDIX I

DISC USSION OF AN AMPLITUDE RATIO FUNCTION

In the analysis of a two mass problem we obtain the amplitude ratio function

,[ ,,//;Zl;

A ,"/’] "7 /’ '

where

- —— e 8 S

e w8 e

Then fif = ?7).-5’/"'/—4/?;?:)!-2’-/” 7”“ /"‘ )f’ '/1//“ 2?/):

m———————— 4 g A oo -

/t’ /? j?)/’ “}’q
S1=l2-gp? 4 p]

{//7 /&'/’ ,' ?3/,?
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b

Equatii\g to zero and solving for p at 9_{_ =, Wwe obtain
. dt

P 2P 20
whence ' |

Pl - G =]

G o _ - ]

Substituting back into the equation for f we obtain, after some manipulation

2

B AN
. ..u,ft ﬁ//f 27 ’ __/2 *27:_ ;0) '

Note that as 7 - O (corresponding to zero damping)
4 ~—» ) ) ~ (corresponds to A1 /‘;-b w,, )
~NAP .
/ /A s (where (res is resonant frequency for
Note: /’ 7 = :)  maximum amplitude ratio)
- Tagld " .
f\ —-— }L -y O (corresponds to amplitude ratio ww oa ) ‘
spe o

. Thus for low damping the function tends to behave like the dynamic magnifier analyzed in
Appendix 11, near the point of resonance,

A typical plot of the function f is given in figure I.1. The maximum value of f, the corres-.
ponding value of the frec-iency ratio parameter p, is plotted in figure 1.2.
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THE DYNAMIC MAGNIFIER FOR
A SINGLE-DEGREE-OF- FREEDOM SYSTEM

.
e S I S A a
a0 i bl . RS b e RN A0 W 2 e i Lt L i =

APPENDIX e




ST SURNURE

APPENDKX I
THE DYNAMIC MAGNIFIER FOR A SINGLE-DEGREE-OF-FREEDOM SYSTEM
A standard result for ti\e equation
. |
.00 -
S + 2¢ f +e’S = Doogqu
" o (IL1)

is Sml v - S.,,.,,

Some RN P

where 7 - _{{’-P’)“’ &?\},:7 » | ,(n.z)‘v..

Note that whenp =1, q = 1/2¢

The maximum value of q is obtained by differentiating the Equation ('I. 2) and equating to
zero in order to determine

14 o ——
/o / = / 1~ 2¢°
Garar
Substitution in equation IL 2 yields
. , .
? - — -———‘;"
s 2 ;,‘A -7
.when 9max is kriown
2
- % =t / L ) =0
c. - < -+ (?7""'
80 that - 2 ’ F ’ - -",' -
¢ =« 3l 1-,/1- 5 |
- 7~d0 -~
106

Vst it o




B | o * APPENDIX III 7

o,

LUMPED PARAMETER SYSTEM ANALYSIS
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APPENDIX 11

NOTE ON COMPUTER TECHNIQUES EMPLOYED IN
LUMPED PARAMETER SYSTEM ANALYSIS
s
During the analysis described in this rep\ " a number of computational techniques were
employed .

LINEAR MODELS e

The simplest method of treating the linear models was found to be by use of a simple elec-
tric analog as shown in figure III.1. The one-to-one correspondence between electrical
and mechanical impedance and between, respectively, inductance and mass, capacitance
and elasticity, and resistance and damping coefficient coupled with the existence of electric
circuit analysis routines made the analysis of these cases extremely easy. This methad
was used for developing the frequency impedance curves shown in figures 22 to51. This
method is currently not flexible enough to accept arbitrary transient inputs,

3

NONLINEAR SPRING MODELS

-

The cases illustrated in figures 53 throu_h 59 in which the buttock and spinal spring forces
were represented by nonlinear discontinuous functions could not be treated by the simple
electric analog method used for the linear model. ‘

In the nonlinear cascs a digital simulation of a 75 block analog program was used. This
program was sufficiently flexible to allow the mtroducuon of a transient input acceleration
such as that shown in figure 58.

MODELS WITH NONLINEAR DAMPING AND SPRINGING

The case (illustrated in figure 10) in which nonlinear damping and springing was used was
programmed in a conventional digital program. A Runge-Kutta step-by-step integration
routine was used and sufficient cycles were calculated to ensure a steady-state response
had been reached. This digital program could readily be adapted to the constant friction
force case or to transient inputs although the latter were not actually used.
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2K k
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v=§c

MECHANICAL CIRCUIT

BB DT SR s

W(lb) 50 1 10

50 70

32,172 32.172
=1.554 - = 2,176
L(Henry's)=m=] 1.554 2.176

m(ib sec-2 /1ty

w(rads/sec) 48.7 52.9

icfnwz(lb/ft) 3685. 61 6089. 34

C (Farad)=1/k=| 000271 . 000164

c (=) ‘1 o0.25 0.25

2K=2mwc
~ (Ib ~ec/ft)

37.84 57.555

R (ohms) = 2K =] 37,84 57.555

Figure II1.1. The Electric Analog of a Mechanical

Two Degree of Freedom System
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